If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x+x+40+x^2-20=180
We move all terms to the left:
5x+x+40+x^2-20-(180)=0
We add all the numbers together, and all the variables
x^2+6x-160=0
a = 1; b = 6; c = -160;
Δ = b2-4ac
Δ = 62-4·1·(-160)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-26}{2*1}=\frac{-32}{2} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+26}{2*1}=\frac{20}{2} =10 $
| 2(x+1)=-3(x+7)=2 | | 7p+3=6p+5 | | 4x-3-5-8=360 | | 4(7+2x)-4=6x-5+2x-7 | | 6x=3x+10+x+40 | | 14/350=p | | 4(3x-4=2(5x+2) | | 375=25x+1 | | 3/4g=16/15 | | 3b-(-2)=4b-12 | | 9p+4(2+p=-18 | | 1/3x+1/4=5/6-1 | | 3=18-1.25x | | -8v+32=8(v-8) | | a²–a–132=0 | | 6+x=12+2× | | -6y^2+10y+0=0 | | 10-5x+6x=12 | | 12/0.5=39/x | | 8(7x+7)=448 | | 10x+4.2=2(5x+1.3)+1.6 | | -2x+1+-5x=8 | | 169-(10x-5)=9(4x-4) | | 7=11-2x | | -1=-7+2x | | 12/0.5=34/x | | a-15=4a+-3 | | -5(-4x+4)+10=150 | | -1x=15 | | 6x+2+-5x=46 | | -2w=130 | | X+2x+3x+4x=800 |